Download di Aplikasi Lebih Mudah
Rapi dan Siap Cetak, Klik Disini untuk Download Aplikasi
Modul untuk Bimbel / Materi Belajar Sekolah TK SD SMP SMA lebih lengkap dan lebih mudah di Aplikasi Produk Aqila Klik Disini untuk Download
Berikut Link-link Soal-soal SMA Matematika Wajib
- Nilai Mutlak 1
- Nilai Mutlak 2
- SPLTV
- Fungsi
- Fungsi Invers
- Trigonometri
- Induksi Matematika
- Program Linier
- Matrik
- Transformasi Geometri
- Barisan dan Deret
- Limit Fungsi
- Turunan
- Integral
- Dimensi Tiga
- Statistika
- Peluang
---------------------------------------------------------------------------
TRIGONOMETRI
--------------------------------------------------------------------------
Ukuran Sudut (Derajat
dan Radian)
Satu radian diartikan sebagai besar ukuran sudut pusat α yang panjang busurnya sama dengan jari-jari,
perhatikan Gambar. Jika ∠AOB = α dan AB = OA = OB,
maka
α =
--------------------------------------------------------------------------
360o = 2π rad atau 1o =
atau 1 rad =
--------------------------------------------------------------------------
Sudut istimewa yang sering digunakan
Perhatikan hubungan secara aljabar antara derajat dengan
radian berikut ini.
atau
90o = 90 ×
Latihan
---------------------------------------------------------------------------
Tentukan
nilai kebenaran (benar atau salah) setiap pernyataan di bawah ini. Berikan penjelasan untuk
setiap jawaban yang diberikan.
a.
b. 150o
=
c. 4
d. 1.500o
= 8π rad = 4 putaran
e. Seorang atlet berlari mengelilingi
lintasan A berbentuk
lingkaran sebanyak 2
putaran. Hal itu sama saja dengan atlet berlari mengelilingi satu kali lintasan B berbentuk
lingkaran yang jari-jarinya 2 kali jarijari lintasan A.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
Contoh
---------------------------------------------------------------------------
Gambarkan sudut-sudut baku di
bawah ini, dan tentukan posisi setiap sudut pada
koordinat kartesius.
a. 60o
b. –45o
Jawab
Latihan
---------------------------------------------------------------------------
Gambarkan setiap ukuran sudut di
bawah ini dalam koordinat kartesius.
a. 120o
b. 600o
c. 270o
d. –240o
e. 330o
f. –800o
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
Latihan
---------------------------------------------------------------------------
1. Diketahui
besar sudut α
kurang dari 90o dan besar sudut θ lebih
dari atau sama dengan 90o dan kurang
dari 180o. Analisislah kebenaran setiap pernyataan berikut ini.
a.
2 α ≥ 90o
b.
θ –
α
≥ 30o
c.
2a +
d.
Ada
nilai α
dan θ yang memenuhi persamaan 2θ –
2 α
= θ
+ α
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
2. Berikut ini
merupakan besar sudut dalam satuan derajat, tentukan kuadran setiap sudut tersebut.
a.
90o d.
800o
b.
135o e.
–270o
c.
225o f.
1.800o
Selanjutnya,
nyatakan setiap sudut di atas dalam satuan radian.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
3. Tentukan
(dalam satuan derajat dan radian) untuk setiap rotasi berikut.
a.
b.
c.
d.
e.
f.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
4. Nyatakan
dalam radian besar sudut yang dibentuk untuk setiap penunjukan waktu berikut.
a. 12.05 d. 05.57
b. 00.15 e. 20.27
c.
16.53 f.
07.30
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
5. Misalkan θ merupakan
sudut lancip dan sudut β
adalah sudut tumpul.
Perhatikan kombinasi setiap sudut dan kedua sudut
tersebut dan tentukan kuadrannya.
a. 3θ c. θ
+ β
b. 2 β d. 2 β – θ
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
6. Perhatikan pergerakan jarum
jam. Berapa kali (jika ada) dalam 1 hari terbentuk sudut-sudut di bawah ini?
a. 90o c. 30o
b. 180o d. 120o
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
8. Ubahlah
sudut-sudut berikut ke bentuk derajat
a.
b.
c.
d.
e.
f.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
---------------------------------------------------------------------------
TRIGONOMETRI
--------------------------------------------------------------------------
Perbandingan Trigonometri pada
Segitiga Siku-Siku
Jika diketahui segitiga ABC siku-siku maka
diidentifikasikan perbandingan trigonometri sebagai berikut :
|
|
Contoh
---------------------------------------------------------------------------
Diberikan segitiga siku-siku ABC,
sin A =
Jawab
Kita memerlukan panjang sisi AB. Dengan menggunakan
Teorema Pythagoras,
diperoleh
AB2 = AC2 – BC2
AB =
AB =
AB =
AB =
Jadi, kita memperoleh panjang sisi
AB =
maka
cos A =
tan A =
Sin C =
cos C =
cot C =
Perlu Diingat
Panjang sisi miring adalah sisi terpanjang
pada suatu segitiga siku-siku. Akibatnya nilai sinus dan cosinus
selalu kurang dari 1 (pada kondisi khusus akan bernilai
1).
Latihan
---------------------------------------------------------------------------
1. Tentukan nilai sinus,
cosinus,
dan tangen untuk
s udut
P dan
R pada
setiap segitiga siku-siku di bawah ini. Nyatakan
jawaban kamu dalam bentuk paling sederhana.
2. Pada suatu
segitiga siku-siku ABC,
dengan
∠B = 90o, AB = 24 cm, dan BC =
7 cm, hitung:
a.
sin A dan
cos A
b. sin C,
cos C,
dan tan C
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
Contoh
---------------------------------------------------------------------------
Dua orang
guru dengan tinggi badan yang
sama yaitu 170 cm sedang berdiri memandang
puncak tiang bendera di
sekolahnya. Guru pertama berdiri tepat
10 m di depan guru kedua.
Jika sudut
elevasi guru pertama 60o dan guru
kedua 30o dapatkah kamu menghitung
tinggi tiang bendera tersebut?
Jawab
Dimana:
AC = tinggi tiang bendera
DG = tinggi guru pertama
EF = tinggi guru kedua
DE = jarak kedua guru
tan 60o
=
BG =
--------------------------------------------------------------------------
tan 30o
=
tan 30o
=
⇔ AB = (10 + BG) × tan 30o
⇔ AB =
⇔ AB × tan 60o = (10 ×
tan 60o + AB) × tan 30o
⇔ AB ×
tan 60o = 10 × tan 60o ×
tan 30o + AB × tan 30o
⇔ AB ×
tan 60o – AB ×
tan 30o = 10 × tan 60o ×
tan 30o
⇔ AB ×
(tan 60o – tan 30o) = 10 ×
tan 60o × tan 30o
⇔ AB =
Jadi, tinggi
tiang bendera adalah
AC = AB + BC atau
AC =
Latihan
---------------------------------------------------------------------------
1. Untuk
setiap nilai perbandingan trigonometri yang diberikan di bawah ini, dengan setiap sudut merupakan
sudut lancip, tentukan nilai 5 macam perbandingan
trigonometri lainnya.
a. sin A =
b. 15 × cot A = 8
c. sec θ =
d. tan α =
e. sin α =
f. tan α =
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
2. Pada sebuah segitiga KLM, dengan
siku-siku di L, jika sin M =
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
3. Jika cot θ =
a.
b.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
7. Perhatikan
segitiga siku-siku di bawah ini.
Tunjukkan bahwa
a) (sin A)2
+ (cos A)2
= 1
b)
tan
B =
c) (scs
A)2 – (cot A)2 = 1
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
8. Dalam
segitiga ABC,
siku-siku di A diketahui
panjang BC =
a,
(a adalah bilangan
positif) dan
cos
∠ABC
=
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
9. Diketahui sin
x +
cos x =
1 dan tan x =
1, tentukan nilai sin x dan
cos x.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
10. Pada segitiga
PQR,
siku-siku di Q, PR
+ QR
= 25 cm, dan PQ
= 5 cm. Hitung nilai
sin P,
cos P,
dan tan P.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
11. Diketahui
segitiga PRS,
seperti gambar di samping ini. Panjang PQ =1, ∠RQS = α rad dan
∠RPS
= β
rad. Tentukan panjang sisi RS.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
---------------------------------------------------------------------------
TRIGONOMETRI
--------------------------------------------------------------------------
Nilai
perbandingan trigonometri untuk sudut-sudut istimewa
|
0o |
30o |
45o |
60o |
90o |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- |
Contoh
---------------------------------------------------------------------------
Diberikan
suatu segitiga siku-siku KLM, siku-siku di L. Jika LM = 5
cm, dan
∠M = 30o. Hitung:
a. panjang
KL dan MK,
b. cos
∠K,
Jawab
a. cos 30o =
cos 30o =
MK
=
tan 30o =
tan 30o =
MK
=
b. karena
∠L = 90o dan ∠M = 30o, maka ∠K = 60o. Akibatnya cos 60o
=
Latihan
---------------------------------------------------------------------------
1. Diketahui
segitiga RST, dengan ∠S
= 90o,
∠T
= 60o,
dan ST = 6 cm.
Hitung :
a.
Keliling segitiga RST
b.
(sin ∠T)2 + (sin ∠R)2
2. Hitung
nilai dari setiap pernyataan trigonometri berikut.
a.
sin 60o × cos
30o + cos 60o × sin 30o
b. 2(tan 45o)2
+ (cos 30o) – (sin 60o)2
c.
d.
e.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
Contoh
---------------------------------------------------------------------------
Diketahui sin (A – B)
=
0o < (A + B)
< 90o, A > B
Hitung sin A dan tan B.
Jawab :
sin (A – B) =
A – B = 30
cos (A + B) =
A + B = 60
maka kita
eliminasi
A – B = 30
A + B = 60
-----------------
2A = 90
A = 45
A – B = 30
45 – B = 30
B = 15
Latihan
---------------------------------------------------------------------------
Diketahui sin (A – B)
=
0o < (A + B)
< 90o, A > B
Tentukan A dan B.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
Latihan
---------------------------------------------------------------------------
1. Manakah
pernyataan yang bernilai benar untuk setiap pernyataan di bawah ini.
a. sin
(A + B) = sin A
+ sin B
b.
Nilai
sin θ akan bergerak naik pada saat nilai θ juga
menaik, untuk 0o
≤ θ ≤ 90o
c.
Nilai
cos θ akan bergerak naik pada saat nilai θ menurun,
untuk 0o
≤ θ ≤ 90o
d. sin
θ = cos θ, untuk setiap nilai θ
e. Nilai
cot θ tidak terdefinisi pada saat θ =
0o
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
2. Jika
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
3. Jika sin x = a
dan cos y
= b
dengan 0 < x <
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
4. Pada suatu segitiga ABC, diketahui a
+ b
= 10,
∠A = 30o,
dan ∠B
= 45o. Tentukan
panjang sisi b.
(Petunjuk:
Misalkan panjang sisi di depan ∠A = a,
di depan ∠B = b, dan ∠B = c).
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
5. Diketahui segitiga ABC, siku-siku di B, cos
a =
Jika AD =
a, hitung:
a. AC
b. DC
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
6. Perhatikan gambar di bawah ini.
Buktikan
a. OC =
sec θ
b. CD =
tan θ
c. OE =
csc θ
d. DE = cot θ
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
---------------------------------------------------------------------------
TRIGONOMETRI
--------------------------------------------------------------------------
Jika 0o ≤ a
≤ 90o, maka berlaku.
a. sin
(90o – a) = cos a
b. cos
(90o – a) = sin a
c. tan
(90o – a) = cot a
d. csc
(90o – a) = sec a
e. sec
(90o – a) = csc a
f. cot
(90o – a) = tan a
Contoh
---------------------------------------------------------------------------
Sederhanakan
bentuk
Jawab
diketahui bahwa cot A = tan
(90o – A).
Akibatnya, cot 25o =
tan (90o – 25o) = tan 65o.
Jadi ,
Contoh
---------------------------------------------------------------------------
sin
3A = cos (A – 26o), dengan 3A adalah sudut lancip. Hitung A.
Jawab :
Diketahui sin 3A = cos (A
– 26o). Karena 3A adalah
sudut lancip, maka sin 3A =
cos (90o – 3A)
Akibatnya,
cos (90o – 3A) =
cos (A – 26o)
(90o – 3A) = (A
– 26o)
A = 29o
Latihan
---------------------------------------------------------------------------
sin
5A = cos (A – 40o), dengan 3A adalah sudut lancip. Hitung A.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
Perbandingan Trigonometri di Berbagai Kuadran
Sudut
negatif :
Grafik Sinus
Latihan
---------------------------------------------------------------------------
Tentukan
a.
sin 45o
b.
sin 135 o
c.
sin 225 o
d.
sin 315 o
e.
sin 30 o
f.
sin 120 o
g.
sin 210 o
h.
sin 300 o
i.
sin 60 o
j.
sin 150 o
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
Grafik
Cosinus
Latihan
---------------------------------------------------------------------------
Tentukan
a.
cos 45o
b.
cos 135 o
c.
cos 225 o
d.
cos 315 o
e.
cos 30 o
f.
cos 120 o
g.
cos 210 o
h.
cos 300 o
i.
cos 60 o
j.
cos 150 o
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
Grafik Tangen
Latihan
---------------------------------------------------------------------------
Tentukan
a.
tan 45o
b.
tan 135 o
c.
tan 225 o
d.
tan 315 o
e.
tan 30 o
f.
tan 120 o
g.
tan 210 o
h.
tan 300 o
i.
tan 60 o
j.
tan 150 o
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
Identitas Trigonometri
---------------------------------------------------------------------------
Rumus-rumus identitas trigonometri adalah sebagai berikut :
Contoh
---------------------------------------------------------------------------
Misalkan 0o < β <
90o dan tan β = 3
Hitung nilai
sin β
dan cos β.
Jawab
sin β
--------------------------
Dengan menggunakan definisi
perbandingan dan identitas trigonometri, diperoleh cot
β =
Akibatnya,
1 + cot2 α = csc2 α
↔ 1 +
↔
↔ csc α =
Karena sin β =
maka sin β =
cos β
-------------------
Dengan menggunakan tan2
α + 1 = sec2 α,
diperoleh:
32
+ 1 = sec2 α
→ sec2 α =
10 atau sec α =
Karena cos β =
maka cos β =
Latihan
---------------------------------------------------------------------------
Dengan menggunakan identitas
trigonometri, sederhanakan setiap bentuk
berikut ini.
a. (tan
x + sec x)(tan x – sec x)
b.
c. tan x -
d.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
Latihan
---------------------------------------------------------------------------
1. Lengkapi
tabel berikut ini.
|
Tanda Nilai
Perbandingan |
α berada di kuadran ke |
|
a. |
sin α > 0 |
cos α > 0 |
|
b. |
sin α < 0 |
cos α > 0 |
|
c. |
tan α < 0 |
sin α > 0 |
|
d. |
tan α > 0 |
sin α > 0 |
|
e. |
csc α < 0 |
tan α < 0 |
|
2. Hitung nilai
dari:
a.
sin
3.000o
b.
cos
2.400o
c.
d.
e.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
3. Tentukan 5
nilai perbandingan trigonometri yang lain untuk setiap pernyataan berikut ini.
a.
cos α =
b. tan
α = 1 ,
c.
4 sin α = 2,
d. sec
β = -2 ,
e. css
α =
f. 3
tan2 α = 1,
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
4. Selidiki
kebenaran setiap pernyataan berikut. Berikan alasan untuk setiap jawabanmu.
a. sec x
dan sin x
selalu mimiliki nilai tanda yang sama di keempat kuadran.
b. Di kuadran I, nilai perbandingan sinus selalu lebih
dari nilai perbandingan cosinus.
c.
Untuk
30o < x <
90o dan 120o < y
< 150o maka nilai 2 sin x
< cos2 y.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
5. Diberikan tan
θ
=
a.
cos
θ
b.
csc
θ
d.
c.
sin
θ
× cos θ + cos θ × sin θ
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
6. Diberikan fungsi f(x) = sin (x + 90o)
, untuk setiap
0o ≤ x ≤ 360o.
Untuk semua sudut-sudut istimewa, tentukan nilai fungsi.
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
7. Sederhanakan
bentuk persamaan berikut ini.
a. cos x
. csc x
. tan x
b.
cos
x .
cot x +
sin x
c.
d. (sin
a + cos a)2 + (sin a –
cos a)2
e. (csc θ –
cot θ) × (1 + cos θ)
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
......................................................................................
---------------------------------------------------------------------------
TRIGONOMETRI
--------------------------------------------------------------------------
Aturan Sinus, Aturan Kosinus,
dan Luas Segitiga
Pada segitiga ABC sembarang didefinisikan aturan-aturan berikut
ini :
Aturan Sinus
Aturan Kosinus
Luas Segitiga
Dua sisi dan satu sudut diketahui
Ketiga sisinya
diketahui
Latihan
---------------------------------------------------------------------------
1. Jika
diketahui segitiga ABC,
dengan ukuran panjang sisi dan sudut-sudutnya sebagai berikut.
a.
b = 20, ∠C = 105o, dan ∠B = 45o. Hitung panjang sisi a dan c.
b.
c = 20, ∠A = 35o, dan ∠B = 40o. Hitung panjang sisi a dan b.
c.
a = 12,5, b = 10, dan ∠A = 110o. Hitung besar ∠B, ∠C, dan panjang sisi c.
d.
a = 4, b
= 6, dan ∠C = 120o. Hitung besar ∠A, ∠B, dan panjang sisi c.
......................................................................................
......................................................................................
......................................................................................
2. Di bawah ini,
diketahui panjang sisi-sisi segitiga PQR.
Hitung nilai sinus dan
tangen untuk
setiap sudutnya.
a. p
= 10 , q
= 14, dan r
= 20
b. p
= 11 , q
= 15, dan r
= 21
c.
p =
8 , q =
12, dan r =
17
......................................................................................
......................................................................................
......................................................................................
3. Diketahui
segitiga ABC,
dengan AB =
20 cm, AC =
30 cm, dan ∠B
= 140o.
Hitung
panjang BC dan
∠A.
......................................................................................
......................................................................................
......................................................................................
4. Pada latihan
mengendarai suatu kapal cepat di perairan, lintasan latihan didesaian seperti yang diberikan pada Gambar. Pengemudi
harus mulai dari titik A, dan bergerak ke arah barat daya dengan
membentuk sudut 52o ke titik B, kemudian bergerak ke arah tenggara dengan membentuk sudut 40o ke titik C, dilanjutkan kembali ke titik A. Jarak titik A ke
C sejauh
8 km. Hitung panjang lintasan si pengemudi kapal cepat tersebut.
5. Pada saat
mensurvei sebidang rawa-rawa, seorang pensurvei
berjalan sejauh 425 meter dari titik A ke titik B, kemudian berputar 65o dan berjalan sejauh 300 meter ke titik C (lihat Gambar). Hitungl panjang AC.
......................................................................................
......................................................................................
......................................................................................
9. Tentukan daerah
asal dan daerah hasil untuk setiap
fungsi berikut.
a.
y =
sin x +
cos x
b.
y = sin x – cos x
c. y =
d.
y =
e.
y = sin x + tan x
......................................................................................
......................................................................................
......................................................................................
10. Gambarkan setiap fungsi f(x)
di bawah ini, untuk
Df: {0 ≤ x
≤
2π}.
a. y
= 2 sin x
d.
y =
–cos x
b. y
= sin x
+ cos x
e. y
= –tan x
c.
y =
–sin x f. y
= 2 + sin x
......................................................................................
......................................................................................
......................................................................................
Latihan
---------------------------------------------------------------------------
1. Diketahui segitiga ABC dengan panjang AC = 6 cm, BC = 4 cm,
besar sudut A = 45°, dan besar sudut C = 30°. Tentukan panjang sisi AB !
.......................................................................
.......................................................................
.......................................................................
.......................................................................
.......................................................................
2. Pada segitiga
siku-siku ABC, nilai cos (A + C) = k. Jika segitiga ABC siku-siku di C, tentukan nilai sin A + cos
B !
.......................................................................
.......................................................................
.......................................................................
.......................................................................
.......................................................................
3. Diketahui sin α = a dengan α adalah sudut tumpul. Tentukan nilai tan α !
.......................................................................
.......................................................................
.......................................................................
.......................................................................
.......................................................................
4. Tentukan hasil dari
.......................................................................
.......................................................................
.......................................................................
.......................................................................
.......................................................................
5. Tentukan persamaan
fungsi trigonometri untuk grafik di atas !
.......................................................................
.......................................................................
.......................................................................
.......................................................................
.......................................................................
6. Jika
.......................................................................
.......................................................................
.......................................................................
.......................................................................
.......................................................................
7. Ditentukan
persamaan
.......................................................................
.......................................................................
.......................................................................
.......................................................................
.......................................................................
8. Diketahui
sebuah segitiga dengan panjang sisi 5 cm, 7 cm, dan 8 cm. Tentukan nilai tangen
dari sudut terkecilnya !
.......................................................................
.......................................................................
.......................................................................
.......................................................................
9. Pada
gambar di atas A dan B adalah titik-titik ujung sebuah terowongan yang dilihat
dari C dengan sudut ACB = 45°. Jika garis CB = p dan CA =
.......................................................................
.......................................................................
..........................................
.............................
.......................................................................
.......................................................................
10. Pada gambar di atas,
jika x = y = z dan a = b = c maka buktikan bahwa jumlah luas persegi yang besar
sama dengan tiga kali jumlah luas persegi yang di dalam !
.......................................................................
.......................................................................
.......................................................................
.......................................................................
.......................................................................
Latihan
---------------------------------------------------------------------------
1.
Nilai tan α pada gambar
di bawah ini adalah ….
a.
b.
c.
d.
e.
2.
Diketahui
a.
b.
c.
d.
e.
3.
Nilai
a.
b.
c.
d.
e.
4.
Dalam segitiga di bawah ini, panjang AB = ….
a.
8
b.
6
c.
5
d.
e.
5.
Dalam segitia siku-siku dibawah ini, panjang BC = a
dan
a.
b.
c.
d.
e.
6.
Diketahui segitiga ABC
siku-siku di C. Jika dan
maka besar sudut (A + B) = ….
a.
60°
b.
75°
c.
90°
d.
105°
e.
135°
7.
Diagonal persegi ABCD yang sisinya 4a berpotongan di
titik S. Jika T adalah titik tengah ruas garis SC maka
a.
b.
c.
d.
e.
8.
Titik-titik sudut segitiga sama kaki ABC terletak pada lingkaran berjari-jari 7 cm. Jika alas AB =
a.
b.
c.
d.
e.
9.
Diketahui sebuah segitiga sama kai dengan alas 20 cm dan tinggi 30
cm. dalam segitiga tersebut dibuat sebuah persegi panjang dengan alas yang
terletak pada alas segitiga dan kedua titik sudut lainnya terletak pada kaki
segitiga tersebut. Luas maksimum segi empat yang dapat dibuat adalah ….
a.
b.
c.
d.
e.
10.
Seorang anak berdiri pada suatu tempat di tepi sungai yang lurus. Ia mengamati pohon
B dan C yang berada di seberang sungai. Poho B tepat di seberang A. Jarak pohon
B dan C adalah
a.
b.
c.
d.
e.
2.
Dari gambar berikut akan diperoleh ….
a.
b.
c.
d.
e.
3.
Suatu segitiga ABC siku-siku di B,
a.
b.
c.
d.
e.
4.
Diketahui segitiga ABC
siku-siku di B, panjang AB = 2, dan BC = 4. Nilai cos C = ….
a.
b.
c.
d.
e.
5.
Segitiga PQR siku-siku sama kaki. Jika sudut Q = 90°
dan PR = 8 cm maka panjang PQ = ….
a.
b.
c.
d.
e.
6.
a.
b.
c.
d.
e.
7.
Diketahuit segitiga ABC
siku-siku di C dengan panjang AB = 13 cm dan panjang BC = 5 cm. Nilai tan B adalah ….
a.
b.
c.
d.
e.
8.
Nilai
a.
b.
c.
d.
e.
9.
Nilai cos 105° sama dengan ….
a.
sin 15°
b.
sec 15°
c.
sin 75°
d.
–sin 15°
e.
–sec 75°
10.
Jika
a.
b.
c.
d.
e.
11.
Jika tan A = 0,75 dan
a.
b.
c.
d.
e.
12.
Dalam ∆ ABC diketahui
panjang sisi b = 5, c = 6, dan besar
a.
5
b.
4
c.
6
d.
7
e.
8
13.
Dalam segitiga ABC, AC = 5, AB = 8, dan sudut
a.
b.
c.
d.
e.
14.
Nilai tangen sudut terkecil dari segitiga yang mempunyai panjang
sisi 4 cm, 6 cm, dan 8 cm adalah ….
a.
b.
c.
d.
e.
15.
Pada segitiga ABC diketahui
bahwa cos (B + C) =
a.
b.
c.
d.
e.
16.
Diketahui segitiga ABC
dengan AC = 5 cm, AB = 7 cm, dan
a.
14 cm
b.
15 cm
c.
16 cm
d.
17 cm
e.
18 cm
17.
Diketahui segitiga ABC, panjang sisi AC = 3 cm, AB = 2
cm, dan
a.
b.
c.
d.
e.
18.
Pada segitiga ABC,
besar sudut C tiga kali besar sudut A dan besar sudut B dua kali besar sudut A.
Perbandingan antara panjang AB dengan
BC adalah ….
a.
3 : 2
b.
2 : 3
c.
2 : 1
d.
3 : 1
e.
4 : 3
19.
Bentuk sederana
a.
b.
c.
d.
e.
20.
Nilai
a.
b.
c.
d.
e.
21.
Jika
a.
0°
b.
30°
c.
45°
d.
60°
e.
75°
22.
Penyelesaian persamaan trigonometri sin x° = 60°
adalah …
a.
x = 60° + k.
180° atau x = 120° + k. 180°
b.
x = 60° + k.
360° atau x = 120° + k. 360°
c.
x = 30° + k.
180° atau x = 150° + k. 180°
d.
x = 30° + k.
180° atau x = 150° + k. 360°
e.
x = 90° + k.
180°
23.
Untuk 0 ° ≤ x ≤ 360°, nilai x yang memenuhi persamaan
cos 2x = cos 30° adalah ….
a.
30°, 150°, 180°, dan 360°
b.
15°, 165°, 195°, dan 345°
c.
60°, 120°, 150°, dan 360°
d.
30°, 120°, 165°, dan 240°
e.
15°, 175°, 150°, dan 310°
24.
Persamaan grafik di atas adalah …
a.
b.
c.
d.
e.
25.
Absis titik potong grafik fungsi y = sin x untuk 0°
< x < 360° adalah ….
a.
45° dan 135°
b.
45° dan 225°
c.
45° dan 315°
d.
90° dan 270°
e.
180° dan 360°
26.
Himpunan penyelesaian 1 - sin 3x = 0, untuk
a.
b.
c.
d.
e.
Download di Aplikasi Lebih Mudah
Rapi dan Siap Cetak, Klik Disini untuk Download Aplikasi
Modul untuk Bimbel / Materi Belajar Sekolah TK SD SMP SMA lebih lengkap dan lebih mudah di Aplikasi Produk Aqila Klik Disini untuk Download
No comments:
Post a Comment